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Totally one-sided first-order and second-order schemes are presented employing a 
numerically calculated characteristic speed direction and are combined into a transportive, 
monotonicity-preserving hybrid scheme using the method of flux correction. The first-order 
scheme is free of expansion shocks and artificial extrema. The hybrid scheme computes a 
provisional update from the first-order scheme, and then filters the second-order corrections to 
prevent occurrence of new extrema. Computed versus analytic results are compared for two 
different N-wave shocks and for a third case involving linear advection of a square wave. 
Results are given with and without the second-order correction. The second-order results are 
always superior to first-order results, with the most dramatic difference occurring in the case 
of linear advection. The results suggest that higher than second-order upwind differences could 
be substituted in the hybrid scheme to reduce truncation error even further. El 1984 Academic 

Press, Inc. 

1. INTRODUCTION 

The develolxnent of flow discontinuities in hyperbolic systems presents substantial 
difftculties to solution by finite differences. When second-order or higher-order 
differences are used, the solutions tend to develop dispersive ripples near sharp 
gradients. When first-order methods are used, the solution suffers from numerical 
dissipation. In recent years this problem has been addressed by the use of nonlinear 
filters to control “anti-diffusive” corrections to first-order results (Boris and Book [ 11, 
Zalesak [lo, 1 l], Van Leer [7], and Harten [5]). In particular, the method of flux- 
corrected transport (FCT) [I, 10 1 l] allows high-order corrections to dominate where 
the solution is smooth, but retains the low-order solution where the flow is highly 
structured. The FCT method is capable of producing impressive results for problems 
involving shock waves and linear advection. 

The aim of this paper is to introduce an improvement to the FCT method as 
applied to scalar hyperbolic conservation laws. Our motivation for developing an 
improved scheme arose from the need to simulate the formation of shocks from 
initially smooth profiles. We found that a commonly used FCT scheme employing a 
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donor cell algorithm as the first part and a flux-limited spatially-centered high-order 
correction produced some pathological results. The worst of these included the 
formation of “staircases” on a steepening slope, and in another case a non-physical 
shock arising out of an expansion region, examples of which are given in the 
numerical results section. The improvements presented here produced a relatively 
simple and robust algorithm which is free of these pathologies. 

The improvement comes about through the use of totally one-sided differences and 
a switching of direction based on an estimate of the characteristic speed. One-sided or 
upwind differences are used both in the low-order monotone step and the high-order 
correction step. Proponents of upwind differencing have pointed out that such 
schemes have the advantage of being “transportive”; that is, they convect perrur- 
bations of the solution in the direction of the flow. This interpretation has a certain 
physical appeal (Roach [S]). Spatially high-order upwind differencing does not seem 
to have found much success on its own, although there have been serious proponenrs 
of the approach (Van Leer [7], Warming and Beam 191). This is probably because of 
its failure to guarantee monotonicity. Monotonicity is the property of scalar hyper- 
bolic conservation laws which forbids the generation of new extrema or the enhan- 
cement of old ones. For example, in an early paper, Van Leer [7] proposed the use of 
a full second-order upwind scheme to solve Burger’s equation. Then noting the 
monotonicity problem, he proposed using flux-limiting fibers to enforce the 
monotonicity constraint. 

In this paper we will demonstrate that the flux-correction technique enables the use 
of spatially high-order upwind differencing while maintaining the proper 
monotonicity constraints. We will demonstrate the robustness of the method by 
solving three test problems: the steepening of an “N-wave” shock (a familiar 
phenomenon in nonlinear acoustics), both in a fixed and a drifting frame with respect 
to the center of the disturbance; and the linear advection of a square wave pulse 
disturbance. Each of these results will be compared with analytic solutions. 

We are concerned with hyperbolic systems which can be modeled by the scalar 
initial value problem 

where the fiux 4 is a smooth function of pa In various applications the dependent 
variable p may play the role of a mass density perturbation or a Flow velocity. Thus p 
may be positive or negative in general. 

Equation ( la) may be expressed as 

where 
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is known as the characteristic speed. Equation (2) implies the preservation of 
monotonicity: Pt = 0 at local extrema. 

In some cases Eq. (2) may admit analytic solutions up to the time at which a 
shock is formed. These solutions may be found by the method of characteristics as 
follows: Equation (2) demands constancy of p along the trajectory 

x, = u(p). (4) 

Both x1 and u are constant on this trajectory, so the value of p at (x, t) may be found 
by following the trajectory backward to the initial condition; that is, 

P(Xv 0 = PO& - MP)>. (5) 

Solutions in closed form are generated by solving (5) for p in terms of x and t. In the 
example to be given in Section 3, u@) is taken to be linear and p,,(x) quadratic. 

If a shock discontinuity in the flow is present, conservation of mass flux across the 
shock is sufficient to determine the speed at which the shock propagates (i.e., the 
Rankine-Hugoniot relation). Therefore, a numerical algorithm written in a flux- 
conservative form should be expected to produce a shock propagating with the 
correct speed as it emerges from a continuously steepening profile. This will be 
demonstrated in the results given below. 

2. THE HYBRID UPWIND METHOD 

In this section we present two separate upwind difference schemes and combine 
them into a hybrid form by the method of flux-correction (Zalesak [lo]). For 
simplicity we assume a constant grid spacing 6~. We take pi and #i to be values at 
integer grid points, and define half-integer grid variables fi+ i,* and wit ,,Z. where f is 
a numerical flux to be defined below, and w is a variable which will be used to 
determine the upwind direction. 

A. The First-Order Scheme 

The numerical method is written as 

Pr+ 1 = Pr -.A+ I,2 +A- I,2 (6) 

where the superscript gives the timestep number. Quantities lacking a superscript are 
evaluated at the timestep n. The numerical fluxes are 
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The direction variable ~1’ is in principle the characteristic speed. However, we find it 
more convenient to define w as a quantity with the same sign as the characteristic 
speed, namely, 

bVi+ L./Z = ($i+ 1 - #i>@i+ 1 -Pi). (8) 

This not only makes the values of w a little faster to compute than a finite difference 
derivative, but also avoids the risk of division by zero. We may prove that this rather 
general first-order upwind method possesses the desired monotonicity property by 
considering the following four possibilities: 

Case 1. I.Viel,? >o; il’i+li2 > 0. 
Equations (6) and (7) give 

or 

p;+l -p~=--$(pi-pi~l) 

where 

k E (#i-$i-l)/@i-Pi-l)= u@-p)e (11) 

This last identity results from the mean value theorem, with p- lying in the interval 

@i-l* Pi>. 
Hence 

with 

pY’-l =Pi(l -L) +Pi-I&- (12) 

Em = lup6t/6xl. 

Equation (12) demonstrates that monotonicity is preserved for E ~~ < 1. 

Case 2. I.v_ l/q < 0; lvi+ ,iz < 0. 
For these directions we find 

(13) 

py+1= PA1 -&t! + Pi+r&+ (14.1 

where 

Et = /u+6t/& 4.15) 

and 

11+ = Wit I - #i)/@i+ I - Pi) = u@+ 1 (16) 

with p, lying in the interval @i,pi+l). For E+ < 1 monotonicity is preserved. 
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Case 3. lvi- l/2 < O; Wi+ l/2 > 0. 
Equations (6) and (7) yield 

p;+Lpi. (17) 

This reflects that u = 0 within one cell of point i and preserves the first-order spatial 
accuracy of the method. A switching condition other than the sign of the charac- 
teristic could result in pi”’ ’ = pJ at a pointj more than one cell distant from the point 
where 4, = 0. At such a point, even first order accuracy would be lost. An example 
will be given below in Fig. 2. 

Case 3 admits the possibility of stationary expansion shocks, if they are present in 
the initial condition. These nonphysical structures will be defined and dealt with 
below. 

Case 4. w_ Il2 > 0; wit I,2 < 0. 
For this case we have 

(18) 

A small amount of algebraic manipulation after adding and subtracting #i within the 
parentheses obtains 

p;+’ = pi(l-C -&+) +Pi+lE+ +Pi-IE-* (19) 

This case provides the most stringent condition necessary to guarantee monotonicity 
(and thus stability as well): 

B. Expansion Shock Correlation 

Models in which viscosity is unimportant on a macroscopic scale are typically cast 
as inviscid, and thus remain invariant upon time and velocity reversal. In a physical 
shock front, however, molecular viscosity transforms kinetic energy to entropy (heat) 
in an extremely small region of compression. Thus a time-reversed shock (called an 
expansion shock) is forbidden by the second law of thermodynamics. Physically, this 
means that a shock discontinuity in an expansion of the flow must cease to be a 
shock by unsteepening at a rate determined by the expansion. The above scheme 
admits a steady state solution whenever two distinct values pL and pR exist such that 
$QL) = #@,J. A discontinuous jump from pr = const to pR = const will remain 
stationary by Eq. (la). When u&) > 0 and u@,) < 0, a compression exists and the 
shock is valid. To eliminate expansion shocks, however, we assume u = @/dp is 
known, and replace a single flux in (6) as follows: Wherever ui < 0 and ui+ 1 > 0: 

fitl& ( fi+j/Z +.Ll,2-~(Pi+l -Pi)‘C”i+l -“i> . +- 1 
(21) 
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This replacement minimizes with respect to fi+1,2 the following measure of 
discrepancy between finite difference representations of Eqs. (la) and (2) 

The use of (21) and (6) turns out to be equivalent to the introduction of a shock-local 
viscosity whose magnitude brings finite difference representations of (la) and (2) into 
closest agreement in the least squares sense. 

C. The Higher Order Scheme 

A stable second-order upwind scheme involving the point i and two points to the 
left or right (depending on the sign of the characteristic) may be defined as follows. A 
predictor step defines fluxes at time level n + 4 according to the following. Equation 
(3) gives straightforwardly 

4, = UP,- (23) 

We use the first-order fluxes (7) including the expansion correction (21) in 

$&l+1/2 = 
#F - +“i(.A+ I/? -.f - i/2>* 124) \ 

Next a corrector step updates p using second-order upwind differences on $R’ r.“, 
One-sided second-order differences may be defined as 

for differentiation to the right of Xi, and 

(25) 

for differentiation to the left. We may cast the above in flux conservative form by 
defining 

After F values are computed and stored, the expansion correction (2 1) is performed 
with the substitution of F for f. The unfiltered second-order method in flux conser- 
vative form would then be 

py+1 -py=-Fi+1/2 +Fi-l/2. (28) 
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(Equation (28) appears for the purpose of illustration and is not executed.) The 
second-order fluxes of (27) will be incorporated into the FCT algorithm which 
follows. For linear advection at a constant speed the second-order algorithm 
(24)-(28) is stable for Courant numbers E < 1. 

D. The Hq’brid Scheme 

We construct the provisional quantities 

Pi” = PY -A+ l/Z +.I- l/2 (29) 

&+ l/2 =Fi+ 112 -fi+ I/Z’ (30) 

The quantities p,? represent a first-order update in which monotonicity has been 
preserved. The second-order scheme above does not preserve monotonicity so we 
must filter the flux-corrections by using a local algorithm called a flux-limiter. This 
filter, which forbids the enhancement of extrema, is the heart of the FCT technique. 
The simplest form is the one originally proposed by Boris and Book [I]: 

where 

\ 1, 
fwx)= I-1, 

x>o 
x < 0. (32) 

Generalizations of the above, including extension to multidimensional systems 
without timestep splitting. have been given by Zalesak [lo]. The hybrid scheme is 
now completed as follows: 

p;+l = Pi” - &, l/2 + asi, 1,2’ (33) 

In summary, p”, II”, and 4” are taken to be known and pn+ ’ is obtained by 
execution of the following steps in order: Eqs. (8), (7), (21), (24), (27), (21) with F 
forf, and (29)-(33). 

3. NUMERICAL EXPERIMENTS 

Let us consider an inviscid Burger’s equation cast in a moving frame of reference 

Pr + 
( 
f P’ - VOP 

1 
=o (34) 

x 
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where a and u,, are constants. The v,, term is added to demonstrate the robustness of 
the method against expansion shocks. Let the initial condition be 

pa(x) = max(O, 6x(x, - x)); X>O (35) 

id-x> = 4x>* 136) 

The result is a pair of antisymmetric parabolic lobes shown in Fig. 3a. Within each 
lobe an analytic solution can be found from Eq. (5). 

The second benchmark for the method is a square wave initial density profile of 
unit amplitude which is advected with constant velocity uO,. The solution is 

I 1, 
P= lo, 

0 < x + L’()t < x0 

otherwise. 
(39) 

This test is of value in determining the degree of numerical diffusion and dispersion in 
an algorithm. 

Before applying the new method to the solution of these test problems, we want to 
give examples of the pathologies to which we alluded in the Introduction. If one uses 
a common FCT method (with a spatially centered second-order correction) on the 
evolution of the parabolic lobes just considered, staircases will form as shown in 
Fig. 1. This pathology is not a result of nonlinear wave propagation, but is connected 
with the shape of the profile. The same behavior is seen when a semicircular profile is 
transported by linear advection. Because the slope of the function changes 
continuously from a finite toward an infinite value, there is some point on the curve 
for which the centered. finite-difference derivative begins to produce Gibbs 
oscillations. When these are clipped by the flux limiter, the staircases appear. Other 
investigators have found that when this pathology occurs, it can be remedied by 
adding an explicit viscous dissipation term to the high-order correction [12]. The 
totally upwind scheme, as we shall demonstrate, is free of these staircase structures 
without modification. This is because the high-order upwind scheme does not produce 

x 

FIG. 1. Nonlinear evolution of a parabolic pulse lobe using a common FCT algorithm with centered 
differences. The figure shows the development of nonphysical staircase structures on the forward slope. 
The solid line is the analytic solution. The dashed line is the numerical result. 
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an unphysical backward propagation of dispersive ripples resulting from an impulsive 
change in slope. 

An example of another pathology motivating our approach is pictured in Fig. 2. 
Early attempts to simulate a drifting N-wave shock using the flow velocity as a 
switching criterion resulted in loss of accuracy at flow reversals in the region of 
expansion. In the example, a sizable “glitch” occurs near the place where the flow 
speed reverses sign. This does not occur when the characteristic speed is used to 
determine the upwind direction. 

The first test of the new method is the development of an N-wave shock from the 
antisymmetric parabolic lobe profile of Eqs. (35) and (36). In (34), u0 is taken to be 
zero. 

Defining the flux at each grid point by 

$ji = +; (38) 

we apply the upwind-FCT hybrid on a grid of 202 points with periodic boundary 
conditions. For comparison, each run is repeated without the second-order correction. 
The test is completely specified by setting the maximum Courant number and the 
number of grid points per lobe: (u(,,, St/& = l/4; 6~ = x,/40. For these parameters, 
the shock is expected to form at step 41. Figure 3 shows the initial condition and 
results of the first-order and hybrid schemes. Note that after step 41 (when the shock 
is expected to form) the hybrid scheme demonstrates increasingly better performance, 
both in the location of the shock and in the sharpness of the profile. 

Our second experiment is like the first, but with the addition of a constant drift uU ; 
i.e., we define the flux at the grid points by 

li=+ui-~&. (39) 

FIG. 2. The development of non-physical expansion shocks in the numerical solution (dashed lines) 
occurs when the flow speed direction is used instead of the characteristic speed direction in the upwind 
switching. 
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The value of v,, is chosen such that the characteristic speed reverses sign where p is 
equal to 0.35 of its maximum. The timestep is the same as for the previous case, bnt 
because of the added drift the Courant number is raised to 0.3375. In this example, 
the distinction between the characteristic speed u = up - u,: and the local flow speed 
u=+ap-~1, becomes important. Tests of the scheme using u instead of u in deter- 
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FIG. 3. Symmetric N-wave shock development. Solid line: analytic solution; dashed line: numerical 
solution. First-order results are given in b-d; second-order in e-g. 
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mining the upwind direction invariably caused the growth of spurious expansion 
shocks as shown in Fig. 2. 

Figure 4 illustrates the results for our second test. A comparison with Fig. 3 reveals 
increased dissipation in the first-order scheme as a result of the increased Courant 
number. However, the second-order results are much less sensitive and still show 
good agreement with the analytical results. 

I (al STEPI 

I--- 

I Cdl STEP 601 i 
r, I/ - 

X 

r 0) 1 STEP 101 

:/i,‘. 

(9) STEP 601 

I 
X- 

FIG. 4. Drifting N-wave demonstrating stability against expansion shocks (see Fig. 2). The charac- 
teristic speed vanishes where the amplitude is 35 percent of initial maximum. For legend see Fig. 3. The 
step-like structure at step 601 is a result of periodic boundary conditions. 
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The final experiment is the square-wave test problem. In this test the profile of (37) 
is convected leftward with a constant velocity giving a Courant number of 0.25. The 
flux at the grid points for this case is simply Qi = -z’,,pi. The results Figs. (5e)-(gj 
preserve the sharpness of the square wave to a reasonable degree after advection 
through 150 cells (step 601). The first-order results Figs. (5b)-(d), however, show 
complete loss of sharpness by this point. 

(al 
1 
I 
I 
I-- C. 

STEP1 
--7 

X 

STEP51 

STEP101 

(c-0 STEP601 

(e) STEP51 

F-1 

(0 STEP101 

~1 ~ -  

STEP601 

FIG. 5. Linear advection of a square wave. Solid line: exact solution; dashed iine: numer~ai 
solution. First-order results appear in b-d; second in e-g. 
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4. SUMMARY AND CONCLUSION 

High-order upwind differencing, properly filtered for monotonicity preservation, 
yields a substantial improvement over comparably filtered central differencing when 
applied to scalar hyperbolic systems describing shock formation. In our work, this 
filtering consists of flux correction to a first-order upwind scheme. The first-order 
scheme takes for the upwind direction the direction of a numerically defined charac- 
teristic speed, as opposed to the actual flow speed. Monotonicity is preserved in each 
of four possible combinations of upwind directions on either side of a grid point. 
Directional information from the first-order scheme is also used to obtain the second- 
order corrections to the fluxes. Expansion shocks are precluded by a one-point flux 
adjustment. Our second-order method extends in a strightforward way to higher-order 
differences. It also gives accurate shock propagation speeds as a result of being cast 
in flux conservative form. That the method achieves the proper development of 
shocks from smooth data has been confirmed by comparison with analytic solutions. 
We attribute the success of the method to the sampling of data exclusively from the 
direction from which the information arrives (i.e., the relevant characteristic 
direction). 
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